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In the case of a finite-dimensional Hilbert space, it is shown that quantum mech- 
anics can be embedded into discrete classical probability theory. In particular, 
states can be represented as stochastic vectors and observables as random vari- 
ables such that all probabilities and expectation values are given in classical ternis. 

1. I N T R O D U C T I O N  

In our work (Stulpe, 1992, 1993; Singer and Stulpe, 1992; Bugajski 
et al., 1992; Hellwig and Singer, 1990, 1991; Busch and Ruch, 1992) we 
investigated some aspects concerning the relation between quantum mechan- 
ics and classical statistical theories. A particularly interesting result is based 
on the fact that there exist injective affine mappings W~-> T W = p  from the 
density operators W o n  the Hilbert space Yt ~ = L~(g~, dx) into the probability 
densities p on phase space. This fact was proved by Ali and Prugove~ki 
(1977a,b), who called the maps T phase-space representations of quantum 
mechanics. Now our result (Stulpe, 1992; Singer and Stulpe, 1992) reads as 
follows. Given a phase-space representation T, then for every bounded self- 
adjoint operator  A e~s(:,~f), every ~ > 0, and any finitely many  density opera- 
tors W j , . . . ,  W,,,, there exists a function f ~ L ~ ( ~  2, dq dp) such that 

tr W~A- fp i (q ,p ) f (q ,p )  dq dp < ~ (1) 

holds, where p;:= TWi (i= 1 , . . . ,  m). That  is, the quantum mechanical 
observables can be described by functions on phase space such that their 
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expectation values can, in arbitrarily good physical approximation, be calcu- 
lated as in classical statistical mechanics. 

There are also discrete versions of the result (1). In fact, one can prove 
the existence of injective affine mappings W ~  T W = p  from the density 
operators into the stochastic vectors p e l ~  (Singer and Stulpe, 1992; 
Stulpe, 1993). Given such a map T, then for every bounded self-adjoint 
operator A e B s ( ~ ) ,  every e > 0, and any finitely many density operators 
WI . . . . .  W,,, there exists a discrete random variable a e l ~  such that 

tr WiA - ~ piiaj < ~ (2) 
j=l  

holds, where p~:--TWi ( i= 1 . . . . .  m), P0 is the j th  component ofp~, and a s 
is the j th  component of a (Stulpe, 1993). 

It is the aim of this paper to derive a sharpening of  the result (2) if the 
Hilbert space is finite dimensional. In particular, we prove everything by use 
of  some linear algebra and do not presuppose any previous results. In Section 
2 we show the existence of injective affine mappings W~--~ T W = p ,  where 
p E ~  N is a stochastic vector and N the square of dim H .  In Section 3 we 
present the analog of  (1) and particularly of (2). Namely, given a classical 
representation W~--~ T W = p ~  ~x, then a random variable a ~  []~N can uniquely 
be assigned to every self-adjoint operator A ~ s ( J t  ~) such that for all density 
operators W 

N 

tr WA = Z PJas (3) 
j=J 

holds, where p = TW. It is crucial that neither p depends on A nor a on W. 
That is, the statistical scheme of finite-dimensional quantum mechanics can 
be embedded into discrete classical probability theory, and, in contrast to 
(1) and (2), the embedding (3) is exact. 

2. CLASSICAL REPRESENTATIONS 

We presuppose n:= dim W < ~ .  Let ~)~(g/g) be the real vector space of  
all self-adjoint operators in ~ ;  ~'~(W) has dimension n2=:N and can be 
thought of as the space of all Hermitian n x n matrices. We denote the set 
of  all density operators by K(~g. ) and the set of  all A ~ ( W )  satisfying 
0 < A < 1 by [0, 1 ]. Furthermore, let K(R N) be the set of  all stochastic vectors 
p = ( P l ,  �9 �9 . , PN) in ~N (i.e., a l lps>0 and ~u= I ps = 1). Every stochastic vector 
p~ []~U corresponds bijectively to a probability measure on the power set of 
{ 1 . . . . .  N }, and every arbitrary vector a ~ [~N can be interpreted as a random 
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variable on {1 . . . .  , N}. Finally, let e : = ( 1 , . . . ,  1) and let [0, e] be the set 
of all a e ~  u satisfying 0 < a : <  1 for a l l j  = 1 . . . . .  N. 

An injective affine mapping from the convex set K(gf )  into the convex 
s e t  K(~ N) can uniquely be extended to an injective (positive) linear map 
T: : J , (~) - -*  ~ar fulfilling TK(~f')~K(~ar). Conversely, every such linear 
map T determines an injective affine mapping from K ( ~ )  into K(Nar). 

Definition 2.1. We call a linear map T: r162 ~ ~ar a classical represen- 
tation of  n-dimensional Hilbert-space quantum mechanics on ~N if 

(i) TK(Jt:)~_K(~N). 
(ii) T is injective. 

Because of N =  n 2, T is even bijective. To prove the existence of such 
classical representations, we need the following lemma. 

Lemma 2.2. The space ~ , ( ~ )  has a Hamel basis F~ . . . . .  Far with 
Fie [0, 1] for all j =  1 , . . . ,  U and ~jNj F:= 1. 

Proof Since the positive cone in ~(~,ug) is generating, it contains a basis 
A~ . . . . .  Aar. This basis can be chosen such that A:e[0, 1] and, moreover, 
~N, A:_< 1. Let 

N N 

B:= 1 - E Aj= E a :&  (4) 
j= l  j= l  

where a :e~ .  Because of Be[0, 1], we have a s # - I  for at least one j. Let 
a:0 # - 1 and define 

F,:=A,, . . . ,  Fj0:--&o+a . . . . .  Far:=Aar (5) 

Then F:e[0, 1] and ~ F:= 1 hold It remains to show that F~ . . . .  , FN is a 
basis m ~ ' s (~ ) ,  i.e., that the elements FI . . . .  , FN are linearly independent. 
Assume Y f l  XjF:= 0. Inserting (5) and (4), we obtain 

N 

E (zj+ Z:oaj)&= o 
j= l  

From the linear independence of A1 . . . . .  AN it follows that 

zj+Z:o=0 

for all j. Sett ingj=j0,  this equation implies A:0 = 0 since a:0 4 : -  1. Hence, A:= 
0 for all j ,  and the elements Fj . . . .  , FN are linearly independent. �9 
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Theorem 2.3. A basis F1 . . . .  , FN in ~s(g/f) with FIE[0, 1] for all j =  
1 . . . . .  N, and ~S~l Fj= 1 defines a classical representation T: ~ , ( ~ )  ~ ~N 
by 

TV:= (tr V F j , . . . ,  tr VFN) (6) 

Conversely, every classical representation T determines uniquely a basis 
F~ . . . . .  FN with the properties as above such that (6) holds. 

Proof The proof of the first statement is straightforward. To prove the 
converse, consider an arbitrary linear map T: ~ ( J f )  --+ ~ u  and the linear 
functional V~--~ (TV) s, where (TV)s denotes thej th  component of TV. Since 
~s(JF) can be placed in duality to itself by (A, B ) : = t r  AB, it follows that 
(TV)s= tr VFj with some F j ~ ( J f ) .  Hence, every linear map Tfrom ~s(Jg)  
into R N is of the form 

TV= (tr VF~ . . . .  , tr VFN) 

Now let T be a classical representation. Then the property (i) of Definition 
2.1 implies FIE[0, 1] and ~U 1 Fj= 1. From the property (ii) we obtain that 
F j , . . . ,  Fu separate the elements of ~s(ovf). In consequence, the linear hull 
of F 1 , . . . , F w  coincides with ~s(~lf), and the family F I , . . . , F N  is a 
basis. �9 

Thus, we have proved the existence of classical representations of n- 
dimensional Hilbert-space quantum mechanics o n  ~U as well as their explicit 
form. Although such a classical representation T: B~(J/F) ~ ~N is bijective 
it does not act bijectively between the sets K(W)  and K(~ N) (provided that 
n = d i m  ~r >2),  i.e., TK(JF) is always a proper subset of K(~ N) (equiva- 
lently, T is a positive linear map, but not T-l) .  Namely, if T restricted to 
K ( ~ )  were a bijective affine map onto  K(~N), then the extreme points of 
the convex set K(ocF) would be mapped onto the extreme points of the convex 
set K(~N). This, however, is not possible, because K(~Cg) has infinitely many 
extreme points, whereas K(~ N) is a simplex with N extreme points. Hence, 
the classical representation T determines an injective embedding of the 
density operators into the probability measures on {1 . . . . .  N} which is 
never surjective [of. the more general considerations in Singer and Stulpe 
(1993)]. 

The basis F~, . . . ,  FN constructed in Lemma 2.2 defines an observable 
F as a POV-measure on the power set of {1 . . . . .  N} by 

F(B) := Z F, (7) 
icB 

where B _  { 1 . . . . .  N}. The probability distribution fl ~ P~(B) := tr WF(B) 
of F in  some state W~K(~Ug) is just the probability measure that corresponds 
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to the stochastic vector T W  with T given by (6). Since accordingly the 
observable F distinguishes states by its respective probability distributions, 
F is called informationalIy complete (Ali and Prugove6ki, 1977a,b). In fact, 
there is a general one-to-one correspondence between classical represen- 
tations and informationally complete observables (see, e.g., Singer and 
Stulpe, 1933). Finally, we remark that an informationally complete observ- 
able cannot be a PV-measure (except for dim ~f  = 1), as one can easily see in 
the special case (7). Namely, if F were projection valued, then the projections 
FI . . . .  , FN would have to be mutually orthogonal, but a family of mutually 
orthogonal projections cannot have more than n < N members. 

3. THE DUALS OF CLASSICAL REPRESENTATIONS 

By means of the scalar products 

(A, B) ~ <A, B> := tr AB 

[A, BeN~(Jr and 

N 

(x, y) ~ (x, y) := Z xjyj 
]=1 

(x, yel~N), the spaces ~ s ( ~ )  and R N are placed in duality to themselves, 
respectively. Hence, for a classical representation T: ~ ' , (~(f)~ NN, the 
adjoint map T': N N ~ ( ~ )  is defined. It is not ha rd  to show that the 
following hold: 

(i) T'x>_O for all x e N  N with xj_>0 ( j =  1 . . . . .  N) and T'e= 1. 
(ii) T' is bijective and (T') -1= (T-I)  '. 

(iii) T'[0, e] ~_ [0, 1], where the inclusion is proper. 
(iv) (T') -l is not a positive linear map, i.e., there are operators A _>0 

such that x :=  (T ' ) - IA  has at least one component x/<0. 

The following theorem now states how quantum observables can be 
described in the context of a classical representation. 

Theorem 3.1. Let T be a classical representation of n-dimensional 
Hilbert-space quantum mechanics on ~N. Then for every A e ~ s ( J f )  there 
exists a uniquely determined element a ~  N such that for all density oper- 
ators W e K ( ~ )  

N 

tr W A =  ~ pja s 
j=l 

holds, where p = TW. In particular, a = (T')-JA. 
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Proof Defining a by A = T'a, we obtain 
N 

tr WA=(W, T'a)=(TW, a ) =  (p, a ) =  ~pjaj 
j = l  

for all WeK(Jg). Since T is bijective, the set of all p =  TW generates ~N, 
the latter implying the uniqueness of a. �9 

According to Theorem 2.3, every classical representation T is of the 
form 

TV= (tr VFI, . . . ,  tr VFN) 

where V ~ s ( d g )  and Fj . . . . .  Fu is a suitable basis in ~ ( d g ) .  From (6) it 
follows that T' is given by 

N 

= E a+F+ 
j = !  

In consequence, for (T') -j we obtain 

(T')-lA =a 

where A =~]u=l ajFj and a :=(a l  . . . . .  aN). 
Let A = ~ &i[ ~b,) (~b; I be the spectral representation of A e ~ s ( ~ )  For 

. j = l  , " 

the expectahon value (A)w of the observable A m the state WeK(~),  
we then have, according to the usual statistical interpretation of quantum 
mechanics, 

N 

(A)w := ~] q+~i=tr WA (8) 
j = J  

where q+:=(~b+i W~b+). In contrast to the vector p occurring in (3), the 
stochastic vector q := (q~ . . . . .  q,) of (8) depends on A and does not charac- 
terize W uniquely (the latter means that the map W ~ q is not injective, the 
reason for this being that the observable A, considered as a PV-measure, 
is not informationally complete). Similarly, in contrast to a, the vector 
)~:=(s . . . . .  s does not characterize A. Note, however, that p, a ~  N, 
whereas q, ,~[R ~. 

Thus, we see that, by means of a classical representation of n-dimen- 
sional Hilbert-space quantum mechanics, the quantum states can be identi- 
fied with stochastic vectors p ~ N  and the quantum observables with the 
discrete random variables a~ ~N, where the expectation values can be calcu- 
lated by the corresponding classical expression given in (3). Hence, we have 
obtained a classical reformulation of the statistical scheme of quantum 
mechanics or, more precisely, an embedding of finite-dimensional quantum 
mechanics into discrete classical probability theory. 
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Passing to the classical description of  quantum observables, positivity 
and normalization properties are not conserved. According to point (iv) at 
the beginning of this section, for A > 0  it does not necessarily hold that a = 
(T')-~A >0. Similarly, according to (iii), if A~[0, 1], then a need not be an 
element of  [0, e]. In particular, the elements of [0, 1] can be interpreted as 
effects, i.e., as realistic 0-1 measurements, where the probability for the 
outcome 1 of A~[0, 1] in some state W~K(~)  is given by tr WA. Hence, 
by Theorem 3.1, quantum mechanical effects A ~ [0, 1] can be described class- 
ically by vectors  aG[~ N, where, in general, a r  e], i.e., a is not a classical 
effect. 
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